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Abstract. A completely general parametrization of the time-dependent decay rates of the modes
Bs → J/ψKS and Bd → J/ψKS is given, which are related to each other through the U-spin flavour
symmetry of strong interactions. Owing to the interference of current–current and penguin processes,
the Bs → J/ψKS observables probe the angle γ of the unitarity triangle. Using the U-spin symmetry,
the overall normalization of the Bs → J/ψKS rate can be fixed with the help of the CP-averaged
Bd → J/ψKS rate, providing a new strategy to determine γ. This extraction of γ is not affected by any
final-state-interaction effects, and its theoretical accuracy is only limited by U-spin-breaking corrections.
As a by-product, this strategy allows us to also take into account the penguin effects in the determination
of β from Bd → J/ψKS, which are presumably very small, and to predict the direct CP asymmetry arising
in this mode. An analogous strategy is provided by the time-dependent Bd → D+D− rate, if its overall
normalization is fixed through the CP-averaged Bs → D+

s D−
s rate.

1 Introduction

It is well known that the “gold-plated” mode Bd → J/ψKS
[1] plays an outstanding role in the determination of
sin(2β), where β is one of the three angles α, β and γ of the
usual non-squashed unitarity triangle [2] of the Cabibbo–
Kobayashi–Maskawa matrix (CKM matrix) [3]. First at-
tempts to measure sin(2β) in this way, which is one of
the major goals of several B-physics experiments starting
very soon, have recently been performed by the OPAL and
CDF collaborations [4].

In this paper, we will have a closer look at the general
structure of the Bd → J/ψKS decay amplitude arising
within the Standard Model, and at the one of its U-spin
counterpart Bs → J/ψKS. The two decays are related to
each other by interchanging all down and strange quarks,
i.e. through the “U-spin” subgroup of the SU(3) flavour
symmetry of strong interactions. Whereas the weak phase
factor eiγ enters in Bd → J/ψKS in a strongly Cabibbo-
suppressed way, this is not the case in Bs → J/ψKS. Con-
sequently, there may be sizeable CP-violating effects in
this Bs decay, which are due to the interference between
current–current and penguin operator contributions. In-
terestingly, the time evolution of the Bs → J/ψKS decay
rate allows us to determine γ. To this end, we have to em-
ploy the U-spin symmetry to fix the overall normalization
of Bs → J/ψKS through the CP-averaged Bd → J/ψKS
rate. This new strategy to extract γ is not affected by
QCD or electroweak penguin effects – it rather makes use
of these topologies – and does not rely on certain “plau-
sible” dynamical or model-dependent assumptions. More-

over, final-state-interaction effects are taken into account
by definition, and do not lead to any problems. The the-
oretical accuracy is only limited by U-spin-breaking cor-
rections. An analogous strategy is provided by the time-
dependent Bd → D+D− rate, if its overall normalization
is fixed through the CP-averaged Bs → D+

s D−
s rate, and

if the B0
d–B0

d mixing phase, i.e. 2β, is determined with the
help of Bd → J/ψKS.

In particular the determination of γ is an important
goal for future B-physics experiments. This angle should
be measured in a variety of ways so as to check whether
one consistently finds the same result. There are several
methods to accomplish this task on the market [5]. Since
the e+e− B-factories operating at the Υ (4S) resonance will
not be in a position to explore Bs decays, a strong empha-
sis has been given to decays of non-strange B mesons in
the recent literature. However, also the Bs system pro-
vides interesting strategies to determine γ. In order to
make use of these methods, dedicated B-physics experi-
ments at hadron machines, such as LHCb, are the natural
place. Within the Standard Model, the weak B0

s–B0
s mix-

ing phase is very small, and studies of Bs decays involve
very rapid B0

s–B0
s oscillations due to the large mass dif-

ference ∆Ms ≡ M
(s)
H −M

(s)
L between the mass eigenstates

BH
s (“heavy”) and BL

s (“light”). Future B-physics experi-
ments performed at hadron machines should be in a posi-
tion to resolve these oscillations. Interestingly, in contrast
to the Bd case, there may be a sizeable width difference
∆Γs ≡ Γ

(s)
H −Γ

(s)
L between the mass eigenstates of the Bs

system [6], which may allow studies of CP violation with
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Fig. 1. Feynman diagrams contributing to Bd(s) → J/ψKS.
The dashed lines in the penguin topology represent a colour-
singlet exchange

“untagged” Bs data samples, where one does not distin-
guish between initially, i.e. at time t = 0, present B0

s or
B0

s mesons [7]. In such untagged rates, the rapid B0
s–B0

s
oscillations cancel.

Some of the Bs strategies proposed in the literature
are theoretically clean, and use pure “tree” decays, for ex-
ample Bs → D±

s K∓ [8]. Since no flavour-changing neutral-
current (FCNC) processes contribute to the corresponding
decay amplitudes, it is quite unlikely that they are signif-
icantly affected by new physics. Consequently, the pre-
ferred mechanism for physics beyond the Standard Model
to manifest itself in the corresponding time-dependent de-
cay rates is through contributions to B0

s–B0
s mixing. In

contrast, the decay Bs → J/ψKS discussed in this pa-
per also exhibits CP-violating effects that are due to the
interference between “tree” and “penguin”, i.e. FCNC,
processes. Therefore, new physics may well show up in
the corresponding CP asymmetries, thereby affecting the
extracted value of γ. A similar comment applies to the
Bd(s) → D+

d(s)D
−
d(s) strategy.

The outline of this paper is as follows: in Sect. 2, the
Bd(s) → J/ψKS decay amplitudes are parametrized in a
completely general way within the framework of the Stan-
dard Model. Moreover, expressions for the observables of
the corresponding time-dependent decay rates are given.
The strategy to determine γ with the help of these observ-
ables is discussed in Sect. 3, whereas we turn to the anal-
ogous strategy using Bd(s) → D+

d(s)D
−
d(s) decays in Sect. 4.

The main results are summarized in Sect. 5.

2 The Bd(s) → J/ψKS observables

The decays B0
d(s) → J/ψKS are transitions into a CP

eigenstate with eigenvalue −1 and originate from b̄ →
c̄cs̄(d̄) quark-level decays. We have to deal both with
current–current and with penguin contributions, as can
be seen in Fig. 1. Let us turn to the mode B0

d → J/ψKS
first. Its transition amplitude can be written as

A(B0
d → J/ψKS) = λ(s)

c

(
Ac′

cc +Ac′
pen

)
+ λ(s)

u Au′
pen

+λ(s)
t At′

pen, (1)

where Ac′
cc denotes the current–current contributions, i.e.

the “tree” processes in Fig. 1, and the amplitudes Aq
′

pen

describe the contributions from penguin topologies with
internal q quarks (q ∈ {u, c, t}). These penguin ampli-
tudes take into account both QCD and electroweak pen-
guin contributions. The primes in (1) remind us that we
are dealing with a b̄ → s̄ transition, and

λ(s)
q ≡ VqsV

∗
qb (2)

are the usual CKM factors. Making use of the unitarity
of the CKM matrix and applying the Wolfenstein para-
metrization [9], generalized to include non-leading terms
in λ [10], we obtain

A(B0
d → J/ψKS) =

(
1 − λ2

2

)

×A′
[
1 +

(
λ2

1 − λ2

)
a′eiθ′

eiγ
]
, (3)

where
A′ ≡ λ2A

(
Ac′

cc +Act′
pen

)
, (4)

with Act′
pen ≡ Ac′

pen −At′
pen, and

a′eiθ′ ≡ Rb

(
1 − λ2

2

)(
Aut′

pen

Ac′
cc +Act′

pen

)
. (5)

The quantity Aut′
pen is defined in analogy to Act′

pen, and the
relevant CKM factors are given by:

λ ≡ |Vus| = 0.22, A ≡ 1
λ2 |Vcb| = 0.81 ± 0.06,

Rb ≡ 1
λ

∣∣∣∣Vub

Vcb

∣∣∣∣ = 0.41 ± 0.07. (6)

The decay B0
s → J/ψKS is related to B0

d → J/ψKS by
interchanging all down and strange quarks, i.e. through
the so-called U-spin subgroup of the SU(3) flavour sym-
metry of strong interactions. Using again the unitarity of
the CKM matrix and a notation similar to that in (3), we
obtain

A(B0
s → J/ψKS) = −λA [1 − aeiθeiγ] , (7)

where
A ≡ λ2A

(
Ac

cc +Act
pen
)

(8)

and

aeiθ ≡ Rb

(
1 − λ2

2

)(
Aut

pen

Ac
cc +Act

pen

)
(9)

correspond to (4) and (5), respectively. It should be em-
phasized that (3) and (7) are completely general para-
metrizations of the B0

d(s) → J/ψKS decay amplitudes
within the Standard Model, relying only on the unitarity
of the CKM matrix. In particular, these expressions also
take into account final-state-interaction effects, which can
be considered as long-distance penguin topologies with in-
ternal up- and charm-quark exchanges [11,12].

If we compare (3) and (7) with each other, we observe
that the quantity a′eiθ′

is doubly Cabibbo-suppressed in
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the B0
d → J/ψKS decay amplitude (3), whereas aeiθ en-

ters in the B0
s → J/ψKS amplitude (7) in a Cabibbo-

allowed way. This feature has important implications for
the CP-violating effects arising in the corresponding time-
dependent decay rates.

The time evolution for decays of initially, i.e. at time
t = 0, present neutral B or B mesons into a final CP
eigenstate |f〉, satisfying

(CP)|f〉 = η|f〉, (10)

is given as follows [5]:

|A(t)|2 =
|N |2

2
[
RLe−ΓLt +RHe−ΓHt

+2e−Γt {AD cos(∆Mt)
+AM sin(∆Mt)}] , (11)

|A(t)|2 =
|N |2

2
[
RLe−ΓLt +RHe−ΓHt

−2e−Γt {AD cos(∆Mt)
+AM sin(∆Mt)}] , (12)

where the ΓL,H denote the decay widths of the B mass
eigenstates, Γ ≡ (ΓL + ΓH)/2, and ∆M ≡ MH −ML > 0
is their mass difference. For the B decays considered in this
paper, the “unevolved” decay amplitudes take the form

A = N [
1 − beiρe+iγ] ≡ N z, (13)

A = ηN [
1 − beiρe−iγ] ≡ ηN z, (14)

and we have

RL ≡ 1
2
[|z|2 + |z|2 + 2η< (e−iφz∗z

)]
= (1 + η cosφ) − 2b cos ρ [cos γ + η cos(φ+ γ)]

+b2 [1 + η cos(φ+ 2γ)] , (15)

RH ≡ 1
2
[|z|2 + |z|2 − 2η< (e−iφz∗z

)]
= (1 − η cosφ) − 2b cos ρ [cos γ − η cos(φ+ γ)]

+b2 [1 − η cos(φ+ 2γ)] , (16)

AD ≡ 1
2
(|z|2 − |z|2) = 2b sin ρ sin γ, (17)

AM ≡ −η= (e−iφz∗z
)

= η
[
sinφ− 2b cos ρ sin(φ+ γ) + b2 sin(φ+ 2γ)

]
.(18)

Here the phase φ denotes the B–B mixing phase:

φ =

{
2β Bd system,

−2δγ Bs system,
(19)

where 2δγ ≈ 0.03 is tiny in the Standard Model because of
a Cabibbo suppression of O(λ2). Note that the observables
RL, RH, AD and AM satisfy the relation

A2
D +A2

M = RLRH. (20)

For the following considerations, it is useful to intro-
duce the time-dependent CP asymmetry

aCP(t) ≡ |A(t)|2 − |A(t)|2
|A(t)|2 + |A(t)|2 (21)

= 2e−Γt
[ Adir

CP cos(∆Mt) + Amix
CP sin(∆Mt)

e−ΓHt + e−ΓLt + A∆Γ (e−ΓHt − e−ΓLt)

]

with

Adir
CP ≡ 2AD

RH +RL
=

2b sin ρ sin γ
1 − 2b cos ρ cos γ + b2

, (22)

Amix
CP ≡ 2AM

RH +RL
(23)

= +η
[
sinφ− 2b cos ρ sin(φ+ γ) + b2 sin(φ+ 2γ)

1 − 2b cos ρ cos γ + b2

]
,

A∆Γ ≡ RH −RL

RH +RL
(24)

= −η
[
cosφ− 2b cos ρ cos(φ+ γ) + b2 cos(φ+ 2γ)

1 − 2b cos ρ cos γ + b2

]
,

and the observable

R ≡ 1
2

(RH +RL) = 1 − 2b cos ρ cos γ + b2. (25)

In the CP asymmetry (21), we have separated the “direct”
from the “mixing-induced” CP-violating contributions. It
is interesting to note that not only Adir

CP, but also R does
not depend on the B–B mixing phase φ. The observables
Adir

CP, Amix
CP and A∆Γ are not independent quantities, and

satisfy the relation

(Adir
CP)2 + (Amix

CP )2 + (A∆Γ )2 = 1. (26)

The formulae given above describe the time evolution
of all kinds of neutral B decays into a final CP eigenstate,
where the “unevolved” decay amplitudes take the form
specified in (13) and (14). Let us turn, in the following
section, to the Bs(d) → J/ψKS observables, which may
provide an interesting strategy to determine γ.

3 Extracting γ from Bs(d) → J/ψKS decays

The observables introduced in (22)–(24) can be obtained
directly from the time evolution of the decay rates corre-
sponding to (11) and (12) and do not depend on the over-
all normalization |N |2. However, owing to (26), we have
only two independent observables, depending on the three
“unknowns” b, ρ and γ, and on the B–B mixing phase φ.
Consequently, in order to determine these “unknowns”,
we need an additional observable, which is provided by
R. Unfortunately, the time-dependent decay rates fix only
the quantity

〈Γ 〉 ≡ PhSp×|N |2×R = PhSp×|N |2× 1
2
(RH+RL) (27)
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Γ (B(t) → f) + Γ (B(t) → f)

= PhSp × |N |2 × [RHe−ΓHt +RLe−ΓLt
]
, (28)

where PhSp denotes an appropriate, straightforwardly cal-
culable phase-space factor. Consequently, the overall nor-
malization |N |2 is required in order to determine R. In
the case of the decay Bs → J/ψKS, this normalization can
be fixed through the CP-averaged Bd → J/ψKS rate with
the help of the U-spin symmetry.

In the case of Bd → J/ψKS, we have

N =
(

1 − λ2

2

)
A′, b = εa′,

ρ = θ′ + 180◦, with ε ≡ λ2

1 − λ2 , (29)

whereas we have in the Bs → J/ψKS case

N = −λA, b = a, ρ = θ. (30)

Consequently, we obtain

H ≡ 1
ε

( |A′|
|A|

)2 [MBdΦ(MJ/ψ/MBd ,MK/MBd)
MBsΦ(MJ/ψ/MBs ,MK/MBs)

]3 〈Γ 〉
〈Γ ′〉

=
1 − 2a cos θ cos γ + a2

1 + 2εa′ cos θ′ cos γ + ε2a′2 , (31)

where

Φ(x, y) =
√

[1 − (x+ y)2] [1 − (x− y)2] (32)

is the usual two-body phase-space function, and 〈Γ 〉 ≡
〈Γ (Bs → J/ψKS)〉 and 〈Γ ′〉 ≡ 〈Γ (Bd → J/ψKS)〉 can
be determined from the “untagged” Bs(d) → J/ψKS rates
with the help of (27) and (28). Since the U-spin flavour
symmetry of strong interactions implies

|A′| = |A| (33)

and
a′ = a, θ′ = θ, (34)

we can determine a, θ and γ as a function of the B0
s–

B0
s mixing phase by combining H with Adir

CP ≡ Adir
CP(Bs →

J/ψKS) and Amix
CP ≡ Amix

CP (Bs → J/ψKS) or A∆Γ ≡
A∆Γ (Bs → J/ψKS). In contrast to certain isospin rela-
tions, electroweak penguins do not lead to any problems
in these U-spin relations. As we have already noted, the
B0

s–B0
s mixing phase φ = −2δγ is expected to be negligi-

bly small in the Standard Model. It can be probed with
the help of the decay Bs → J/ψφ (see, for example, [13]).
Large CP-violating effects in this decay would signal that
2δγ is not tiny, and would indicate new-physics contri-
butions to B0

s–B0
s mixing. Strictly speaking, in the case of

Bs → J/ψKS, we have φ = −2δγ−φK, where φK is related
to the K0–K0 mixing phase and is negligibly small in the
Standard Model. On the other hand, we have φ = 2β+φK

in the case of Bd → J/ψKS. Since the value of the CP-
violating parameter εK of the neutral kaon system is small,
φK can only be affected by very contrived models of new
physics [14].

An important by-product of the strategy described
above is that the quantities a′ and θ′ allow us to take
into account the penguin contributions in the determina-
tion of β from Bd → J/ψKS, which are presumably very
small because of the Cabibbo suppression of λ2/(1−λ2) in
(3). Moreover, using (34), we obtain an interesting relation
between the direct CP asymmetries arising in the modes
Bd → J/ψKS and Bs → J/ψKS and their CP-averaged
rates:

Adir
CP(Bd → J/ψKS)

Adir
CP(Bs → J/ψKS)

= −εH (35)

= −
( |A′|

|A|
)2 [MBdΦ(MJ/ψ/MBd ,MK/MBd)

MBsΦ(MJ/ψ/MBs ,MK/MBs)

]3 〈Γ 〉
〈Γ ′〉 .

An analogous relation holds also between the B± → π±K
and B± → K±K CP-violating asymmetries [11,12]. At
“second-generation” B-physics experiments at hadron ma-
chines, for instance at LHCb, the sensitivity may be good
enough to resolve a direct CP asymmetry in Bd → J/ψKS.
In view of the impressive accuracy that can be achieved in
the era of such experiments, it is also an important issue
to think about the theoretical accuracy of the determi-
nation of β from Bd → J/ψKS. The approach discussed
above allows us to control these – presumably very small
– hadronic uncertainties with the help of Bs → J/ψKS.

Interestingly, the strategy to extract γ from Bs(d) →
J/ψKS decays does not require a non-trivial CP-conserving
strong phase θ. However, its experimental feasibility de-
pends strongly on the value of the quantity a introduced in
(9). It is very difficult to estimate a theoretically. In con-
trast to the “usual” QCD penguin topologies, the QCD
penguins contributing to Bs(d) → J/ψKS require a colour-
singlet exchange, as indicated in Fig. 1 through the dashed
lines, and are “Zweig-suppressed”. Such a comment does
not apply to the electroweak penguins, which contribute
in “colour-allowed” form. The current–current amplitude
Ac

cc is due to “colour-suppressed” topologies, and the ratio
Aut

pen/(A
c
cc + Act

pen), which governs a, may be sizeable. It
is interesting to note that the measured branching ratio
BR(B0

d → J/ψK0) = 2BR(B0
d → J/ψKS) = (8.9 ± 1.2) ×

10−4 [15] probes only the combination A′ ∝
(
Ac′

cc +Act′
pen

)
of current–current and penguin amplitudes, and obviously
does not allow us to separate these contributions. It would
be very important to have a better theoretical understand-
ing of the quantity aeiθ. However, such analyses are far
beyond the scope of this paper, and are left for further
studies. If we use

BR(Bs → J/ψKS)
BR(Bd → J/ψKS)

= εH

( |A|
|A′|

)2

×
[
MBsΦ(MJ/ψ/MBs ,MK/MBs)
MBdΦ(MJ/ψ/MBd ,MK/MBd)

]3
τBs

τBd

(36)
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and (33), we expect a Bs → J/ψKS branching ratio at the
level of 2 × 10−5.

The general expressions for the observables (22)–(24)
and (31) are quite complicated. However, they simplify
considerably if we keep only the terms linear in a. Within
this approximation, we obtain the simple result

tan γ ≈ sinφ− ηAmix
CP

(1 −H) cosφ
= −

(
ηAmix

CP

1 −H

)∣∣∣∣
φ=0

, (37)

allowing us to determine γ from the CP-averaged Bs(d) →
J/ψKS rates and the mixing-induced CP asymmetry aris-
ing in Bs → J/ψKS.

In the general case, where no approximations are made,
there is also a “transparent” strategy to determine γ. The
point is that the CP-violating asymmetries Adir

CP and Amix
CP

allow us to fix contours in the γ–a plane, which are de-
scribed by

a =

√
1
k

[
l ±
√
l2 − hk

]
, (38)

where

h = u2 +D(1 − u cos γ)2, (39)
k = v2 +D(1 − v cos γ)2, (40)
l = 2 − uv −D(1 − u cos γ)(1 − v cos γ), (41)

with

u =
(ηAmix

CP ) − sinφ
(ηAmix

CP ) cos γ − sin(φ+ γ)
, (42)

v =
(ηAmix

CP ) − sin(φ+ 2γ)
(ηAmix

CP ) cos γ − sin(φ+ γ)
(43)

and

D =
(Adir

CP

sin γ

)2

. (44)

It should be emphasized that these contours are theoret-
ically clean. It is also possible to combine the direct and
mixing-induced CP asymmetries arising in Bd → π+π− in
an analogous way [16], allowing us to fix certain contours
as well [17].

So far, we have not yet used the observable H. Com-
bining it with Amix

CP , we can fix another contour in the γ–a
plane:

a =

√
H − 1 + u(1 + εH) cos γ

1 − v(1 + εH) cos γ − ε2H
. (45)

If we use A∆Γ instead of Amix
CP , we obtain the same ex-

pression for a as given in (45), where u and v specified in
(42) and (43) are replaced by

u → (ηA∆Γ ) + cosφ
(ηA∆Γ ) cos γ + cos(φ+ γ)

, (46)

v → (ηA∆Γ ) + cos(φ+ 2γ)
(ηA∆Γ ) cos γ + cos(φ+ γ)

. (47)

The intersection of the contours described by (38) and
(45) fixes both a and γ. Let us illustrate this approach in
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Fig. 2. The contours in the γ–a plane fixed through the
Bs(d) → J/ψKS observables for a specific example discussed
in the text
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Fig. 3. Feynman diagrams contributing to Bd(s) → D+
d(s)D

−
d(s)

a quantitative way by considering a simple example. As-
suming a negligible B0

s–B0
s mixing phase, i.e. φ = 0, and

γ = 76◦, which lies within the range allowed at present for
this angle, implied by the usual indirect fits of the unitar-
ity triangle, as well as a = a′ = 0.2 and θ = θ′ = 30◦,
we obtain the Bs → J/ψKS observables Adir

CP = 0.20,
Amix

CP = 0.33, A∆Γ = 0.92 and H = 0.95. The correspond-
ing contours in the γ–a plane are shown in Fig. 2, where
the solid lines are obtained with the help of (38), and the
dot-dashed lines correspond to (45). Interestingly, in the
case of the contours shown in Fig. 2, we would not have to
deal with “physical” discrete ambiguities for γ, since val-
ues of a larger than 1 would simply appear unrealistic. If it
should become possible to measure A∆Γ with the help of
the widths difference ∆Γs, the dotted line could be fixed.
In this example, the approximate expression (37) yields
γ ≈ 82◦, which deviates from the “true” value of γ = 76◦
by only 8%. It is also interesting to note that we have
Adir

CP(Bd → J/ψKS) = −0.98% in our example.
Before turning to the Bd(s) → D+

d(s)D
−
d(s) decays in the

next section, let us say a few words on the SU(3)-breaking
corrections. Whereas the contours in the γ–a plane re-
lated to (38), i.e. the solid curves in Fig. 2, are theoret-



304 R. Fleischer: Extracting γ from Bs(d) → J/ψKS and Bd(s) → D+
d(s)D

−
d(s)

0 15 30 45 60 75 90 105 120 135 150 165 180
γ [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

a

A
mix

, A
dir

A
mix

, H

Fig. 4. The contours in the γ–ã plane fixed through the
Bd(s) → D+

d(s)D
−
d(s) observables for a specific example discussed

in the text (2β = 53◦)

ically clean, those described by (45), i.e. the dot-dashed
and dotted lines in Fig. 2, are affected by U-spin-breaking
corrections. Because of the small parameter ε = 0.05 in
(31), these contours are essentially unaffected by possible
corrections to (34), and rely predominantly on the U-spin
relation |A′| = |A|. In the “factorization” approximation,
we have

|A′|
|A|

∣∣∣∣
fact

=
FB0

dK0(M2
J/ψ; 1−)

FB0
sK0(M2

J/ψ; 1−)
, (48)

where the form factors FB0
dK

0(M2
J/ψ; 1−) and

FB0
sK0(M2

J/ψ; 1−) parametrize the quark-current matrix

elements 〈K0|(b̄s)V–A|B0
d〉 and 〈K0|(b̄d)V–A|B0

s 〉, respec-
tively [18]. We are not aware of quantitative studies of
(48), which could be performed, for instance, with the help
of sum-rule or lattice techniques. In the light-cone sum-
rule approach, sizeable SU(3)-breaking effects were found
in the case of the Bd,s → K∗ form factors [19]. It should be
emphasized that also non-factorizable corrections, which
are not included in (48), may play an important role. We
are optimistic that we will have a better picture of SU(3)
breaking by the time the Bs → J/ψKS measurements can
be performed in practice.

4 Extracting γ from Bd(s) → D+
d(s)D

−
d(s)

decays

The decays B0
d(s) → D+

d(s)D
−
d(s) are transitions into a CP

eigenstate with eigenvalue +1 and originate from b̄ →
c̄cd̄(s̄) quark-level decays. We have to deal both with
current–current and with penguin contributions, as can
be seen in Fig. 3. In analogy to (3) and (7), the corre-
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Fig. 5. The contours in the γ–ã plane fixed through the
Bd(s) → D+

d(s)D
−
d(s) observables for a specific example discussed

in the text (2β = 180◦ − 53◦)

sponding transition amplitudes can be written as

A(B0
s → D+

s D−
s ) =

(
1 − λ2

2

)

×Ã′
[
1 +

(
λ2

1 − λ2

)
ã′eiθ̃′

eiγ
]

(49)

A(B0
d → D+

d D−
d ) = −λÃ

[
1 − ãeiθ̃eiγ

]
, (50)

where the quantities Ã, Ã′ and ãeiθ̃, ã′eiθ̃′
take the same

form as in the Bs(d) → J/ψKS case. In contrast to Bs(d) →
J/ψKS, there are “colour-allowed” current–current con-
tributions to Bd(s) → D+

d(s)D
−
d(s), as well as contributions

from “exchange” topologies, and the QCD penguins do
not require a colour-singlet exchange, i.e. are not “Zweig-
suppressed”.

Usually, Bd → D+
d D−

d decays appear in the literature
as a tool to probe β [5]. In fact, if penguins played a negli-
gible role in these modes, β could be determined from the
corresponding mixing-induced CP-violating effects. How-
ever, the penguin topologies, which contain also important
contributions from final-state-interaction effects, may well
be sizeable, although it is very difficult to calculate them
in a reliable way. The strategy proposed here makes use
of these penguin topologies, allowing us to determine γ,
if the overall Bd → D+

d D−
d normalization is fixed through

the CP-averaged, i.e. the “untagged” Bs → D+
s D−

s rate,
and if the B0

d–B0
d mixing phase 2β is determined with

the help of Bd → J/ψKS. It should be emphasized that
no ∆Mst oscillations have to be resolved to measure the
untagged Bs → D+

s D−
s rate. Since the phase structures

of the B0
d → D+

d D−
d and B0

s → D+
s D−

s decay amplitudes
are completely analogous to those of B0

s → J/ψKS and
B0

d → J/ψKS, respectively, the formalism developed in the
previous section can be applied by performing straight-
forward replacements of variables. Taking into account
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phase-space effects, we have

H̃ =
1
ε

(
|Ã′|
|Ã|

)2 [
MBd

MBs

Φ(MDs/MBs ,MDs/MBs)
Φ(MDd/MBd ,MDd/MBd)

] 〈Γ̃ 〉
〈Γ̃ ′〉 ,

(51)
where the CP-averaged rates 〈Γ̃ 〉 ≡ 〈Γ (Bd → D+

d D−
d )〉

and 〈Γ̃ ′〉 ≡ 〈Γ (Bs → D+
s D−

s )〉 can be determined with the
help of (27) and (28), and the function Φ(x, y) is as given
in (32).

Let us illustrate the strategy to determine γ, again by
considering a simple example. Assuming ã = ã′ = 0.1,
θ̃ = θ̃′ = 210◦, γ = 76◦ and a B0

d–B0
d mixing phase

of φ = 2β = 53◦, we obtain the Bd → D+
d D−

d observ-
ables Ãdir

CP = −0.092, Ãmix
CP = 0.88 and H̃ = 1.05. In this

case, studies of CP violation in Bd → J/ψKS would yield
sin(2β) = 0.8, which is the central value of the most recent
CDF analysis [4], implying 2β = 53◦ or 2β = 180◦ −53◦ =
127◦. The former solution for 2β would lead to the con-
tours in the γ–ã plane shown in Fig. 4. The contours cor-
responding to 2β = 127◦ are shown in Fig. 5. Since values
of ã = O(1) appear unrealistic, we would obtain the two
“physical” solutions of 76◦ and 104◦ for γ, which are due
to the twofold ambiguity of 2β. There are several strate-
gies to resolve this discrete ambiguity in the extraction of
2β [20], which should be feasible in the era of “second-
generation” B-physics experiments.

As in the Bs(d) → J/ψKS case, only the contours in-
volving the observable H̃ are affected by SU(3)-breaking
corrections. Because of the small parameter ε, they are es-
sentially due to the U-spin-breaking corrections to |Ã′| =
|Ã|. Within the “factorization” approximation, we have

|Ã′|
|Ã|

∣∣∣∣∣
fact

≈ (MBs −MDs)
√
MBsMDs(ws + 1)

(MBd −MDd)
√
MBdMDd(wd + 1)

fDsξs(ws)
fDdξd(wd)

,

(52)
where the restrictions form the heavy-quark effective the-
ory for the Bq → Dq form factors have been taken into
account by introducing appropriate Isgur–Wise functions
ξq(wq) with wq = MBq

/(2MDq
) [21]. Studies of the light-

quark dependence of the Isgur–Wise function were per-
formed within heavy-meson chiral perturbation theory, in-
dicating an enhancement of ξs/ξd at the level of 5% [22].
Applying the same formalism to fDs/fD gives values at
the 1.2 level [23], which is of the same order of magnitude
as the results of recent lattice calculations [24]. Further
studies are needed to get a better picture of the SU(3)-
breaking corrections to the ratio |Ã′|/|Ã|. Since “factor-
ization” may work reasonably well for Bq → D+

q D−
q , the

leading corrections are expected to be due to (52).
The experimental feasibility of the strategy to extract

γ from Bd(s) → D+
d(s)D

−
d(s) decays depends strongly on the

size of the penguin parameter ã, which is difficult to pre-
dict theoretically. The branching ratio for B0

d → D+
d D−

d is
expected at the 4×10−4 level [21]; the one for B0

s → D+
s D−

s
is enhanced by 1/ε = 20, and is correspondingly expected
at the 8 × 10−3 level. Already at the asymmetric e+e− B-
factories starting very soon, it should be possible to per-

form time-dependent measurements of the decay Bd →
D+

d D−
d , whereas Bs → D+

s D−
s – and its “untagged” rate –

may be accessible at CDF or HERA-B. However, unless
the penguin effects in Bd → D+

d D−
d are very large, the ap-

proach to determine γ discussed in this section appears to
be particularly interesting for “second-generation” exper-
iments, such as LHCb. The e+e− B-factory experiments
should nevertheless have a very careful look at the decay
Bd → D+

d D−
d , and those at hadron machines should study

its U-spin counterpart Bs → D+
s D−

s .

5 Summary

The observables of the time-dependent Bs → J/ψKS rate,
in combination with the CP-averaged Bd → J/ψKS rate,
provide an interesting strategy to determine the angle γ
of the unitarity triangle. This approach is not affected
by any final-state-interaction effects, and its theoretical
accuracy is only limited by the U-spin flavour symmetry
of strong interactions. As a by-product, it allows us to take
into account the penguin effects in the determination of β
from Bd → J/ψKS, which are presumably very small. An
analogous strategy is provided by the time evolution of
Bd → D+

d D−
d decays and the untagged Bs → D+

s D−
s rate.

These new strategies may be promising for “second-
generation” B-physics experiments, for example LHCb.
Their experimental feasibility strongly depends on the size
of the penguin effects in Bs(d) → J/ψKS and Bd(s) →
D+

d(s)D
−
d(s), which are very difficult to calculate and re-

quire further theoretical studies. Recent experimental re-
sults of the CLEO collaboration on certain non-leptonic
B decays, which are dominated by penguin contributions,
have shown that these topologies may well lead to sur-
prises.
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